The Death of Stars:

Neutron Stars, Black Holes and Beyond

Alejandro Vigna Gómez contact: avigna[at]star.sr.bham.ac.uk

Astronomy in the City January 24, 2018

Credit: NASA
SN 2006gy

Outline

- What is a star?
- The life of sing stars (crash course)
- The death of stars: White Dwarfs Neutron Stars and Black Holes
- Beyond: Pair-instability Supernova

A star is a luminous sphere, which burns lighter elements into heavier elements and it is held together by its own gravity.

Self-gravitation: matter pushes inwards

Earth
Mass: $6 \times 10^{24} \mathrm{~kg}$

Sun
Mass: $2 \times 10^{30} \mathrm{~kg}$
$10^{24}=1000000000000000000000000$
$10^{30}=1000000000000000000000000000000$

Nuclear Burning:

 a star gets hot and begins burning

Photons (Y), are massless particles which form light. They travel at the speed of light in vacuum and possess energy.

Hydrostatic Equilibrium

Stellar evolution

Thomas Kallinger, University of British Columbia and University of Vienna

Stellar Evolution (0.8-8 mo)

Credit: Wikipedia

Credit: Wikipedia

The Death of a Star:

 White Dwarf (WD), Neutron Stars (NS) and Black Holes (BH)Large Mass to Ayerage
Star
Mass Star
Yery Large
Mass Star The fate of a star depends on its mass (size not to scale)

Supernovae: Neutron Stars and Black Holes

Credit: Wikipedia

Credit: NASA

Beyond: Pair-instability Supernova

Core-collapse

Pair-instability

Pair Production

Pair-instability Supernova

- Proposed in the late 1960s by Barkat (1967), Rakavy (1967) and Fraley (1968).

Pair-instability Supernovae leave NO remnant!

TRho_Profile

Credit: NASA

Conclusions

- What is a star?: "A star is a luminous sphere of plasma held-rogether by its own gravity."
- The life of single stas: they burn lighter elements into heavy elemen growing a core, and they expand.
- The death of stars: WD, NS,BH...
- Beyond: ...and PISN(?)

