The Death of Stars: Neutron Stars, Black Holes and Beyond

Alejandro Vigna Gómez contact: avigna[at]star.sr.bham.ac.uk

Astronomy in the City January 24, 2018

Credit: NASA SN 2006gy

Outline

• What is a star?

• The life of single stars (crash course)

The death of stars: White Dwarfs
 Neutron Stars and Black Holes

Beyond: Pair-instability Supernova

Self-gravitation: matter pushes inwards

Earth Mass: 6 × 10²⁴ kg

Sun Mass: 2×10^{30} kg

Credit: NASA

Nuclear Burning:

a star gets hot and begins burning

Photons (γ), are massless particles which form light. They travel at the speed of light in vacuum and possess energy.

Hydrostatic Equilibrium

https://ryanoursun.wikispaces.com/file/view/hydro.jpg/62193798/hydro.jpg

Stellar evolution

Stellar Evolution (0.8-8 Mo)

Credit: Wikipedia

The Death of a Star:

White Dwarf (WD), Neutron Stars (NS) and Black Holes (BH)

Credit: NASA

Supernovae: Neutron Stars and Black Holes

Credit: Wikipedia

Beyond: Pair-instability Supernova

Core-collapse

Pair-instability

Pair Production

Pair-instability

Pair-instability Supernova

• Proposed in the late 1960s by Barkat (1967), Rakavy (1967) and Fraley (1968).

Pair-instability Supernovae leave NO remnant!

Conclusions

- What is a star?: "A star is a luminous sphere of plasma held together by its own gravity."
- The life of single stars: they burn lighter elements into heavy elements, growing a core, and they expand.
- The death of stars: WD, NS, BH....
- Beyond: ...and PISN(?)